摘要

在众包平台上,不同类型的用户在参与意愿、工作动机、业务能力等方面具有多样性和差异性的特征,在平台上产生的价值也不同。基于用户价值度量对用户进行细分,是更好地洞察用户价值和需求、对用户进行个性化和精细化管理的关键。同时,选择众包用户价值衡量维度也是目前需要解决的问题。因此,该研究首先基于RFM模型并结合众包平台及众包用户的特性,将用户信用纳入用户价值模型,提出并构建了众包用户价值衡量模型RFMC(Recency, Frequency, Monetary, Credit);然后,结合“一品威客”平台获取所需的实验数据,运用GBDT算法完成众包用户分类;最后,比较了Nave Bayes, Multinomial Logistic Regression与GBDT算法的分类效果,并比较了不考虑用户信用的传统模型与RFMC模型的分类效果。结果表明,所提模型适用于众包用户且具有较好的实验效果。

全文