摘要
以注水肉为对象进行无损检测技术的应用,需要着重于正常肉和注水肉之间的区分,可采用基于光谱分析技术和模式识别的方法。以牛肉为对象,对注水肉的模式识别模型进行了研究。在9002 200 nm波段内,以凸显差异性为目的,分别对正常肉和注水肉样本的光谱数据进行特征值提取,以具有差异性的特征值建模。首先使用小波变换观察奇异值的方法分别提取到两种肉类的多个特征波段,并以特定原则构成多个特征波段组合项,再与光谱的聚类分析结果相结合,为两种肉类共同确定可用于模式识别算法的光谱特征值,即主要以聚类结果中的1 8181 842 nm、1 1941 278 nm两个波段形成了4种组合,最终构成4个条件下、不同数量的目标矩阵。基于支持向量机算法为每一个目标矩阵建立模式识别的模型,以留一法对目标矩阵进行训练集和验证集的分配并进行交叉验证,以交叉验证结果中两种肉类识别正确率之和的最大值作为当前目标矩阵的总体最优识别率,结果显示,所有矩阵中,总体识别率最大值为90. 48%,具体数据为:两个波段都不被包含时,目标矩阵的总体识别率最高为88. 10%;完全包含两个波段时最高识别率为90. 48%;只考虑单一因素时的总体识别率分别为86. 90%和89. 29%。可采用曼-惠特尼秩和检验的方法对这些总体识别率数据进行差异显著性分析。结果表明,1 8181 842 nm波段较为显著地体现了正常肉与注水肉近红外光谱吸收特点的不同。另外,识别结果的数据还显示,若对正常肉和注水肉分别考察,正常肉的识别率整体相对较高。
- 单位