摘要

富氧底吹铜熔炼炉喷枪是整个熔炼炉中最重要的部件,并且造价高,易损坏,工作环境恶劣复杂,对其进行准确的寿命预测比较困难。提出了一种基于IPSO-BP神经网络的寿命预测模型,粒子群优化算法解决了BP神经网络容易陷入局部极小值和训练速度慢的问题,优化的粒子群算法优化了惯性权重和学习因子,进一步加快了训练速度和搜索速度,提高了BP神经网络跳出局部极小值的能力。以工作环境中容易对喷枪寿命造成影响的因素作为输入,喷枪寿命作为输出,通过实际生产采集的数据做验证,并与BP神经网络和PSO-BP神经网络预测模型作对比。结果表明,本文构建的寿命预测模型预测效果比BP神经网络和PSO-BP神经网络的预测更加准确,精度更高,该预测模型为富氧底吹铜熔炼的喷枪寿命预测提供了一种方法借鉴。