线性判别分析(LDA)方法进行高维的人脸识别时,经常会遇到小样本问题(SSS)和边缘类重叠问题。本文提出一种新的LDA方法,重新定义类内离散度矩阵,利用参数来权衡其特征值估计的偏差和方差,以解决小样本问题;对类间离散矩阵加权,让边缘类均匀分布,防止边缘类的重叠,以提高识别率。大量的实验已经证明该方法能根据小样本问题的严重度调控参数以达到最高识别率,比传统的方法更优。