摘要
传统的观点句识别多利用句子内部的情感特征进行分类,而在跨语言的多文档观点句识别任务中,不同语言、不同文档的句子之间具有密切的关联,这些关联特征对于观点句识别有一定的支撑作用。因此,提出一种基于双向长短期记忆(Bi-LSTM)网络框架并融入句子关联特征的汉越双语多文档新闻观点句识别方法。首先提取汉越双语句子的情感要素和事件要素,构建句子关联图,并利用TextRank算法得到句子关联特征;然后基于双语词嵌入和Bi-LSTM将汉语和越语的新闻文本编码在同一个语义空间;最后联合考虑句子编码特征和关联特征进行观点句识别。理论分析和模拟结果表明,融入句子关联图能够有效地提升多文档观点句识别的准确率。
-
单位昆明理工大学; 自动化学院