摘要
Hadoop分布式文件系统(HDFS)在大数据存储中具有优良的性能,适用于处理和存储大文件,但在海量小文件处理时性能显著下降,过多的小文件使得整个系统内存消耗过大。为了提高HDFS处理小文件的效率,改进了HDFS的存储方案,提出了海量小文件的存储优化方案。根据小文件之间的相关性进行分类,然后将同一类小文件合并上传,并生成索引文件,读取时采用客户端缓存机制以提高访问效率。实验结果表明,该方案在数据迅速增长的情况下能有效提高小文件访问效率,降低系统内存开销,提高HDFS处理海量小文件的性能。
- 单位