针对深层自动编码机(DAE)内部协变量迁移问题,提出一种深层自适应平衡自动编码机(DSBAE),用于手写数字的分类(HDC)。重点研究了自适应平衡层对内部协变量迁移的纠正方法,构建了DSBAE网络的分类模型,根据平衡网络参数体系原理,制定了自适应参数更新策略。实验在MNIST,USPS以及PENDIGITS三个公开手写数据集上对DSBAE以及深度学习中其他分类算法进行比较,证明DSBAE能有效解决深层网络的内部协变量迁移问题,并在手写数字分类准确率上占有明显优势。