摘要

边缘智能设备、网关和云端在智能协同计算的过程中,存在隐私泄露、计算能力有限等问题。提高联邦学习可以大大提高智能协同计算的训练效率,但也会暴露边缘智能终端的训练集信息。基于此,提出了一种融合边缘智能计算和联邦学习的隐私保护方案(PPCEF)。首先,提出了一个基于共享秘密和权重掩码的轻量级隐私保护协议,该协议基于秘密共享的随机掩码方案,不仅可以在不损失模型精度的前提下保护梯度隐私,还可以抵抗设备掉线和设备间的共谋攻击,具有很强的实用性。其次,设计一种基于数字签名和哈希函数的算法,不仅可以实现消息的完整性和一致性,还能抵抗重放攻击。最后,使用MNIST和CIFAR10数据集,证明提出的PPCEF方案在实践中安全且高效。