摘要
针对机器人示范学习过程中任务泛化与动作轨迹泛化问题,提出了一种将多演示动作轨迹的任务参数化学习与动作序列推理相结合的方法.针对通用动作基元的多演示轨迹样本,利用动态运动基元进行轨迹编码并建立任务参数化模型,利用高斯过程回归学习外部参数与模型参数之间的映射.针对新的任务实例,利用规划域定义语言推理缺失动作序列,任务参数化模型根据新的外部参数泛化出动作的目标轨迹,并修正轨迹误差.在UR5机器人上的实验表明,面对不同任务实例和环境变化,该方法可灵活生成动作序列并调整泛化目标,基于多演示的任务参数化模型能够对给定外部参数泛化出平滑的目标轨迹,泛化效果优于单一演示轨迹,提高了机器人任务泛化的能力.
-
单位东南大学; 自动化学院