摘要

针对传统K-均值算法容易受到野点和噪声点的影响,缺乏鲁棒性的问题,提出了一种基于协同熵的K-均值算法。该方法利用协同熵作为一种局部的相似度度量手段,并依赖最大协同熵准则进行最优聚类中心的求解。采用迭代重加权的优化算法可以用来快速实现最优聚类中心的求解。对于残差较大的野点和噪声,它们在聚类中心更新的过程中将被赋予较小的权重。实验结果表明,基于协同熵的K-均值算法具有较好的鲁棒性,并获得较好的聚类效果。

  • 单位
    中国航空工业集团公司洛阳电光设备研究所