摘要
针对在人脸图像高维数据降维时单纯使用主成分分析(PCA)算法的提取精度和速度受限问题,提出一种基于小波变换和改进PCA的混合特征提取算法.该方法首先对人脸图像进行小波分解,选取低频分量对人脸图像进行特征提取;然后利用改进的PCA算法进行主成分提取,获得代表人脸特征的特征向量;最后将该算法应用于Olivetti Faces人脸库数据集的图像分类.实验结果表明,经过该混合算法处理后的图像特征数据,由卷积神经网络(CNN)算法分类识别时准确率提升10%,识别速度提高约37%.
-
单位长春财经学院; 长春工业大学