摘要

针对脊柱解剖结构较为复杂的问题,提出一种用于脊柱磁共振成像影像检测的YOLOv4-disc算法。首先,针对真实病例样本数量较少的问题,使用限制对比度的自适应直方图均衡(CLAHE)数据增强方法提高模型的泛化能力。然后,使用K-means算法对数据集中真实框的尺寸进行聚类,得到合适的锚框尺寸并确定锚框数量。其次,在CSPDarknet-53骨干特征提取网络中使用深度可分离卷积替代普通卷积,减少网络参数并降低运算量。最后,基于Focal损失改进原生网络的损失函数,解决one-stage目标检测中正负样本比例严重失衡的问题。实验结果表明,所提YOLOv4-disc算法的平均精度均值(mAP)达到了90.80%,相比原生YOLOv4提高了3.51个百分点。