摘要

目的建立精度更高,适用性更广的岩爆预测模型,提高岩爆预测工作效率,得到最优的岩爆预测评价指标组合,解决岩爆样本数据不均衡、量纲不同的问题。方法改进模型和优选评价指标两个角度构建岩爆预测改进模型。以预测性能较佳的Random Forest为基本算法,结合基于AdaBoost集成和参数寻优两种思路改进模型,建立GSK-AdaBoost-Random Forest模型。根据样本实际及岩爆成因,构建6组岩爆评价指标组合,分别作为输入变量训练模型。应用随机过采样、统一极差处理法等技术对实测数据进行预处理,构建应用样本集。应用其训练模型,根据准确率比较不同特征组合、不同模型的预测性能。结果以σθ、σc、σt、σθ/σc、σc/σt、Wet为评价指标的岩爆预测GSK-AdaBoost-Random Forest模型准确率最高,为0.857,较准确率最高值为0.69的常规随机森林模型提升明显。对8个工程实例进行的岩爆预测研究验证了所建模型的可靠性。结论 GSK-AdaBoost-Random Forest模型的预测准确性远高于常用判别准则,且不易发生过拟合,将其应用于岩爆预测实践可行性较高。