亚马逊网站为每本图书生成推荐列表,供用户选择其感兴趣的图书,但该推荐方法仅考虑图书之间的相似性。文章在此基础上引入图书推荐列表的相似性,计算不同图书推荐列表的相似度,通过相似度排序为每本图书生成推荐列表,然后将其与亚马逊提供的推荐列表融合对用户进行个性化图书推荐。实验结果显示,相比于仅使用推荐列表的方法,文章所提出的方法所生成的推荐结果在平均准确率、平均召回率、MacroF1和MicroF1上都有一定的提升。由此可见,推荐列表的相似性对于图书推荐效果可以起到一定的优化作用。