摘要
针对极端复杂工况下风力机轴承运行状态监测中的故障诊断问题,提出一种基于小波包能量熵故障特征提取并结合鲸鱼算法(WOA)优化最小二乘支持向量机(LSSVM)进行故障分类识别的风力机轴承故障诊断方法。通过小波包分解提取各频带成分的能量熵值构建故障特征集,同时针对LSSVM参数的选取依赖人工选择的盲目性问题,采用鲸鱼优化算法寻找LSSVM中最优的2个关键参数正则化参数和核函数参数,以此提高故障诊断模型的分类精度。通过不同工况下的试验数据集测试,实现了对不同故障状态特征参数的准确分类。结果表明,所提方法诊断结果优于遗传算法(GA)和粒子群算法(PSO)分别优化的LSSVM,远优于传统的LSSVM算法。
- 单位