基于BP神经网络的农田大气氨浓度预测

作者:瞿英; 王冕; 董文旭; 王玉恒*
来源:中国生态农业学报(中英文), 2019, 27(04): 519-528.
DOI:10.13930/j.cnki.cjea.181057

摘要

农业源氨排放是大气氨最主要的来源,其中氮肥施用是最主要的农业氨排放源之一。预测大气氨浓度的变化,确定影响大气氨排放的因素,可为科学管理农田,减轻环境污染提供参考。本文利用BP神经网络分析农田大气氨浓度及与各气象因素的关系,以便清晰地了解农田大气氨浓度的变化规律,为研究农田大气氨提供一种新的思路与方法。首先选取2015年5—10月的农田大气氨浓度数据及气象监测数据,建立以气象因素(气压、气温、相对湿度、降水量、风速和日照时数)为输入变量,农田大气氨浓度作为输出变量的预测模型。其次采用主成分分析法筛选出对农田大气氨浓度影响较大的气象因素,分别为气温、相对湿度、降水量和风速,然后把筛选出的4个主要因素和原来的6个因素分别作为BP神经网络预测模型的输入变量,利用神经网络模型对农田大气氨浓度进行预测。结果显示,农田大气氨浓度的实际值为0.148 5 mg·m-3, 4个因素的预测值为0.159 4 mg·m-3,6个因素的预测值为0.173 2mg·m-3,预测误差分别为7.35%、16.65%,并且4个因素的预测相对误差为1.4%~27.0%,而6个因素的预测相对误差为1.1%~45.0%。预测的农田大气氨浓度在前5 d内变化较大,但随着时间的推移,农田大气氨浓度逐渐变小趋于平缓,且预测值与实际值的变化趋势基本相符。利用4个因素作为输入变量建立预测模型,预测得到的农田大气氨浓度值比6个因素作为输入变量得到的农田大气氨浓度值与实际值更吻合,相对误差值较小。可见,通过主成分分析法去除冗余因素后建立的神经网络模型更加有效,预测结果比筛选之前的预测效果更好,所建立的模型对甄选关键因素具有较好的适用性,并且神经网络预测模型对农田大气氨浓度的预测精度较高。本文构建的农田大气氨浓度预测模型可为农田大气氨浓度分析及相关研究提供方法和思路上的指导。

  • 单位
    河北科技大学; 中国科学院遗传与发育生物学研究所农业资源研究中心; 经济管理学院

全文