摘要
在医疗命名实体识别中,由于存在大量医学专业术语和语料中语言不规范的原因,识别的准确率不高。为了识别未登录的医学术语和应对语言不规范问题,提出一种基于N-grams新词发现的Lattice-LSTM的多粒度命名实体识别模型。在医疗对话语料中使用N-grams算法提取新词并构造一个医疗相关的词典,通过Lattice-LSTM模型将输入的字符和所有能在词典匹配的单词一起编码,其中门结构能够使模型选择最相关的字符和单词。Lattice-LSTM能够利用发现的新词信息识别未登录的医学术语,从而得到更好的实验识别结果。
- 单位