摘要
2016年我国颁布《全国矿产资源规划(2016—2020年)》,首次将镍列为战略性矿产资源。我国是全球最大的镍消费国,但镍资源储量少,对外依存度高。科学预测镍原矿需求量对保障镍矿产业链与供应链安全、稳定具有重要的现实意义。从需求侧出发,利用灰色关联度法选取中国不锈钢产量、人均GDP、电镀行业市场规模、城镇化率、产业结构、新能源汽车产量作为镍原矿需求情景预测的驱动变量,再在灰色GM(1,1)模型预测基础上,与BP神经网络算法相结合,构建基于残差优化的GM-BP组合模型,对2025—2035年中国镍原矿需求展开多情景预测。研究结果表明:组合模型实现了对小样本非线性时间序列数据的有效预测,且比GM(1,1)模型拟合误差更小,预测精度更高;根据组合模型,2025年、2030年、2035年我国镍原矿多情景需求均值分别为182.22万t、272.08万t、395.17万t,“十四五”、“十五五”、“十六五”期间需求年均增长5.60%、17.97%、24.62%。镍原矿需求呈稳定上升态势,镍矿供需矛盾将进一步加剧,我国必须提高镍供应能力,降低对进口镍的依赖程度。对此,提出如下政策建议:1)推进国内不锈钢产业的转型升级,优化生产工艺和产品结构,推广新型合金材料的应用;2)加大对镍矿勘探和开发的支持力度,如鼓励矿业企业技术创新,提高勘探效率和精度,同时积极推动国际合作,吸引国外先进技术设备进入国内市场;3)促进进口多元化,与多个供应国建立合作关系,鼓励国内企业参与海外镍矿项目。
-
单位中国地质大学(武汉)经济管理学院