摘要
【目的】传统的河蟹分拣方法主要依靠人眼识别,误差率大,耗时耗力,且易对河蟹造成损伤。随着机器视觉技术和人工智能的高速发展,基于视觉识别技术的河蟹分拣方法效率高、准确度高。【方法】课题组设计了一种基于品质智能分级技术的河蟹高效分级系统,通过使用不同等级的雌雄河蟹各20只进行分级试验,利用视觉模块的图像采集与图像处理技术采集河蟹图像,经过图像的灰度化、滤波、增强、图像分割和形态学处理消除环境干扰,结合河蟹雌雄判别技术和河蟹肥满度公式,计算得到河蟹公母与肥满度识别准确率指标。【结果】该系统的河蟹雌雄平均识别准确率为97.5%,肥满度平均识别准确率为97%,证实了分级装置的可靠性。【结论】该系统采用视觉识别技术进行河蟹无损检测,可以实现低损伤、高效率、高准确度识别河蟹,与传统人工相比提高了判别准确度,提升了分拣效率,大幅节省人力、物力,具有广泛的应用前景。
- 单位