摘要

现有基于深度学习的方面级情感分析模型需要考虑如何提取深层次的语义信息,其次通过依存树提取句法结构时可能存在信息丢失与数据稀疏问题.针对以上问题,本文提出了基于深度双向门控循环单元与全局双向图卷积网络的神经网络模型(DBG-GBGCN).该模型通过深度双向门控循环单元捕获深层次的语义特征,得到上下文的隐层表示.然后将依存树的邻接矩阵转变为带有全局句法信息的全局矩阵,将此矩阵与上下文的隐层表示一起输入至双向图卷积网络进行特征融合,最后经过掩码层和注意力层得到一个包含深层语义特征与句法结构信息结合的分类特征.实验结果证明,该模型在5个公开数据集上的准确率与F1值均比对比模型有着一定的提升.