摘要

提出判别字典学习来获取线性子空间方法,以减弱光照等噪声对子空间人脸特征提取的影响,从而在保证稀疏系数的局部结构性同时保持字典的判别性.首先,训练与语意相关的结构字典,并在破坏非同类语意样本间局部结构稀疏性的同时,增强同类语意样本间局部结构的稀疏性;其次,利用最大间隔准则(MMC)在重构后稀疏易分的语意子空间对样本进行特征提取,不仅可以避免小样本问题还可以在重构后的语意空间中提取抗噪声干扰的特征.在Yale库、AR库和Yale B库数据集上的试验结果表明:与现有算法相比,该算法有更优的性能,能更高效地提取不受噪声干扰的易分类人脸语意特征.

全文