摘要

视觉目标跟踪在智能监控和人机交互等领域有着广泛的应用。该文针对时空上下文(STC)跟踪算法尺度适应性不强的问题进行研究,提出一种尺度优化的时空上下文目标跟踪算法。首先,提出一种新型加权滤波函数,滤除图像的高频信息,提升算法的精度;其次,定义两种判别标准,实现时空上下文模型的自适应更新;最后,通过相关性原理训练尺度滤波器,估计出目标的尺度大小,提高算法的尺度适应性。实验表明:提出的跟踪算法能有效改善STC跟踪算法的尺度更新缺陷问题,提高STC跟踪算法的跟踪精度,与近年来出现的基本跟踪算法相比,该算法有着良好的跟踪效果。该算法在AMD-A6处理器、2.7 GHz主频、4 GB内存的计算机硬件平台下,实现68 f/s的实时跟踪速度。