基于门控和上下文注意力机制的图像修复方法

作者:周慧鑫; 王瑛琨; 宋江鲁奇; 赵星; 张嘉嘉; 向培; 张喆; 李苗青; 李怡雨; 田成; 杨庆友; 梅峻溪
来源:2021-09-01, 中国, CN202111019820.1.

摘要

本发明公开一种基于门控和上下文注意力机制的图像修复方法,对所采用的可见光数据集图像及其轮廓图像乘以二进制掩膜M,分别得到降质后的缺失图像和辅助信息图像;通过所述降质后的缺失图像和额外的辅助信息图像构建包含真实图像、缺失图像和辅助信息图像的数据集;通过添加感受野模块和损失函数对上下文注意力模块进行改进,构建基于门控卷积和上下文注意力机制的改进的生成对抗网络模型;通过所述缺失图像和辅助信息图像对生成对抗网络模型进行训练,获得最优的生成对抗网络模型;将待修复输入到最优的生成对抗网络模型中,获得有效修复图像。本发明相较于传统算法在大区域或不规则区域缺失的图像修复问题上具有明显的进步。