摘要
本发明公开了一种基于深度学习的欺诈应用检测方法,包括步骤:1)获取移动广告数据,进行预处理;2)提取结构数据和样本数据;3)基于结构数据构建图并获取图嵌入特征,基于样本数据构建应用二维数据单元;4)所有应用的数据单元和图嵌入特征纵向拼接构建应用基本属性特征矩阵和图嵌入特征矩阵,构成输入特征;5)定义标签,构成被试数据;6)构建混合卷积神经网络,用于欺诈检测;7)被试数据输入至混合卷积神经网络中训练,得到混合卷积神经网络模型;8)采用混合卷积神经网络模型进行欺诈检测。本发明能够同时考虑应用的结构特征和基本属性特征,有效提高欺诈应用检测的准确率,同时减少移动广告历史数据特征工程的工作量。
- 单位