摘要
针对滚动轴承故障冲击信号周期性强且易被强烈的背景噪声所淹没的特点,提出基于互补集合经验模态分解(CEEMD)与改进的最大相关峭度解卷积(IMCKD)的轴承故障诊断方法。首先,对采集到的信号进行CEEMD分解,利用峭度为准则筛选IMF分量进行信号的重构,再对重构信号进行最大相关峭度解卷积处理,实现信号的滤波降噪,最后,将滤波信号进行包络解调得到轴承的故障特征。通过轴承故障的仿真和实验研究,验证了该方法的有效性和可行性。
- 单位
针对滚动轴承故障冲击信号周期性强且易被强烈的背景噪声所淹没的特点,提出基于互补集合经验模态分解(CEEMD)与改进的最大相关峭度解卷积(IMCKD)的轴承故障诊断方法。首先,对采集到的信号进行CEEMD分解,利用峭度为准则筛选IMF分量进行信号的重构,再对重构信号进行最大相关峭度解卷积处理,实现信号的滤波降噪,最后,将滤波信号进行包络解调得到轴承的故障特征。通过轴承故障的仿真和实验研究,验证了该方法的有效性和可行性。