摘要
在传统姿态运动特征提取过程中存在有效提取效率低的问题,于是提出了基于卷积神经网络(convolutional neural network, CNN)算法的时空权重姿态运动特征提取算法。针对所选择的运动时空样本,提取相应的时空运动关键帧并以静态图像的形式输出;采取运动目标检测、图像增强等多项措施完成初始运动图像的预处理工作;借助CNN将运动特征矢量化;采用时空权重自适应插值方法减少运动边缘检测误差,从姿态边缘特征和姿态运动时空特征两方面实现姿态运动特征提取,并输出提取结果。与传统算法进行对比实验的结果表明,所提出的算法在有效特征数量方面得到了提升。
- 单位