摘要
在役考核中,对遥测参数进行监控与分析,是评估在轨卫星工作状态及健康状况的重要途径。为解决在线多任务故障预测问题,提出了结合长短期记忆网络(LSTM)和卷积神经网络(CNN)的数据挖掘模型,并运用了一种基于误差反馈的权重自调整机制。利用某型卫星(含故障)遥测参数的仿真数据进行分析处理,实验结果表明:在线CNN-LSTM模型以最小的信息损失进行建模,对比单一模型以及传统的回归模型,CNN-LSTM模型不仅在测试集上取得了最小平均绝对百分比误差12.61%,同时模型预测性能在长时间预测中优于离线模型。
-
单位国防大学; 中国人民解放军装备学院; 西安卫星测控中心