摘要

针对当前电子商务网站用户评分过于集中而区分度不明显,以及整数评分可信度不高导致协同过滤推荐效果较差的问题,提出一种改进协同过滤算法.利用改进的词性路径模板算法挖掘评论中包含的产品特征和情感词,分析并建立评论特征偏好向量;依据评论特征偏好向量计算评论中包含的情感态度,利用用户评论中包含的情感态度对评分进行修正,使得修正后的评分更接近于用户的真实评分意愿;利用修正后的评分计算评分相似度,与偏好相似度结合产生推荐.实验结果表明,该算法有效地增加了评分区分度与可信度,提高了最近邻居的质量,从而提高了推荐结果的准确度.