摘要

高级测量体系的建设在传统电力系统中引入了许多新技术,对电力系统安全提出了新的考验。网络的开放性和安全性之间的矛盾加大,使得非法电力用户窃电的手段增多,如何有效检测窃电成为电网信息化的一个新问题。根据高级测量体系系统架构的特点,使用One-class SVM无监督机器学习架构对电力用户负荷异常进行检测,可以在小样本、样本分类不均衡环境下提高检测的准确性。使用对检测结果过滤的方法对检测结果进行分类处理,降低系统的虚警率。系统能提高用电稽查效率,降低电力系统的非技术性损失。最后对系统进行架构搭建实现,使用真实算例验证了算法的执行效率和检测效率。

  • 单位
    电子工程学院; 云南电力试验研究院(集团)有限公司电力研究院; 华北电力大学; 云南电网公司; 云南电力试验研究院(集团)有限公司电力研究院