摘要

根据离散动力系统中逐点跟踪性和极限跟踪性的定义,引入非自治动力系统中逐点跟踪性和极限跟踪性的概念,研究了非自治动力系统中逐点跟踪性和极限跟踪性的动力学性质,得到如下结果:1)若F={fi}i=0∞拓扑共轭于G={gi}i=0∞,则F具有逐点跟踪性当且仅当G具有逐点跟踪性;2)乘积系统(X×Y,F×G)具有逐点跟踪性当且仅当(X,F)和(Y,G)具有逐点跟踪性;3)乘积系统(X×Y,F×G)具有极限跟踪性当且仅当(X,F)和(Y,G)具有极限跟踪性.这些结果丰富了非自治动力系统中逐点跟踪性和极限跟踪性的理论.