摘要

目的 节省电流体喷射打印精度预测的时间和解决电流体工艺参数的选择问题,达到提高电流体打印的质量和效率的目的。方法 为了对电流体喷射打印精度进行预测,提出有限元模型与机器学习相结合的方法。基于线性回归、支持向量回归和神经网络等机器学习算法建立4种参数与射流直径的关系模型。结果 算法结果表明:支持向量回归和神经网络预测模型的决定系数R2能达到0.9以上,表示模型可信度高;支持向量回归和神经网络预测模型指标都比线性回归预测模型的小。结论 机器学习算法可对电喷印打印精度进行有效预测,预测效率提高了十几倍,节省了精度预测的时间。

全文