摘要

针对传统人体跌倒检测方法准确度低,不能在人体疑似跌倒的第一时间及时检测的问题,提出基于智能视觉的人体跌倒检测方法。根据智能视觉分析技术解析人体跌倒行为,采用加速度传感器采集人体跌倒惯性特征数据并利用加速度传感器建立三轴加速坐标,对跌倒行为作出判断。在巨大的特征量集合中,运用K-L变换方法提取出准确的加速度峰值和倾角变化值,据此设置跌倒行为检测的约束条件,完成对跌倒行为的分类。采用PSO分类器优化人体跌倒检测的SVM参数,完成人体跌倒高精准度检测。实验结果表明,所提方法的检测准确度高于对比的3种文献方法,检测时间最短,能够及时检测目标个体跌倒情况,可广泛应用于现实生活中。