摘要
常规水果采摘机械目标识别方法多数采用特征阈值化法,对水果图像进行分割处理,不能根据水果图像中某些目标存在的共同特征将其分割为特定区域,无法为目标识别提供有力支持,降低了水果采摘机械目标识别的精确率。基于此,引入机器视觉技术原理,以类球状水果为例,提出了一种全新的水果采摘机械目标识别方法。利用高性能的拍摄相机,随机选取类球状水果进行图像采集与预处理,获取特征突出、不存在噪声点的图像,采用机器视觉技术设计图像分割算法,将图像划分为多个超像素块,对类球状水果图像边缘进行平滑处理,获取融合特征的类球状水果采摘机械目标识别显著图,完成机械目标识别。实验分析可知,通过这方法识别类球状水果采摘机械目标,其识别结果的精确率、召回率与调和平均值等三个评测指标均≥95.38%,识别效果优势显著。