摘要
【目的】为了提升自然场景中农村在建房屋的识别准确率,并为后续的农村违建房屋智能化监管提供技术支撑。【方法】文章基于无监督聚类和YOLOX目标检测算法,发展了一种乡村房屋在建状态识别方法。首先,构建在建房屋无监督聚类模型,并以此对在建房屋进行类别精细划分,使得不同类别之间特征差异较大,相同类别特征差异较小,其次,再使用划分好的类别制作房屋检测数据集,并训练YOLOX目标检测模型对在建房屋进行识别,最后,在在建房屋数据集上设计模型对比实验,以此验证算法有效性。【结果】实验结果表明:在在建房屋识别任务中,基于无监督聚类和YOLOX的在建房屋识别算法m AP为83.27%,比采用原始数据(不进行在建房屋类别划分)训练的YOLOX算法mAP提升了7.91%,同时比采用人工划分类别的YOLOX算法mAP提升了5.08%。【结论】因此该文方法有效提升了乡村房屋在建状态的识别精度,同时也为具有复杂场景和多个不同状态的目标进行识别时,提升识别准确率提供一种有效且可靠的解决思路。
- 单位