摘要
针对传统粒子群寻优速度慢和局部收敛等缺点,提出一种基于平均速度的混合粒子群优化算法.给出了粒子群平均速度的定义,用来表征粒子群的活跃程度,并作为粒子群惯性系数和学习因子调节的依据,加快了粒子群的寻优速度.设计了基于平均速度的切换模拟退火算法和退火温度的更新公式,使得粒子群在保持较快的寻优速度条件下,仍能很容易地跳出局部极小点.对3个典型测试函数的寻优问题进行实验,所得结果表明了该算法的有效性.
-
单位自动化学院; 复杂系统智能控制与决策国家重点实验室; 北京理工大学