摘要

【目的】更加全面地提取文本语义特征,提高文本向量对文本语义的表示能力。【方法】通过卷积神经网络提取词粒度、主题粒度和字粒度文本特征向量,通过"融合门"机制将三种特征向量融合得到最终的文本向量,并进行文本分类实验。【结果】该模型在搜狗语料库文本分类实验上的准确率为92.56%,查准率为92.33%,查全率为92.07%,F1值为92.20%,较基准模型Text-CNN分别提高2.40%,2.05%,1.77%,1.91%。【局限】词序关系范围较小,语料库规模较小。【结论】该模型可以更加全面地提取文本语义特征,得到的文本向量对文本语义表示能力更强。