摘要
针对目标检测算法YOLOv3检测精度低、目标识别效果差等问题,从特征提取和特征融合的角度提出一种改进的YOLOv3目标检测算法。采取连续残差结构和深度卷积双路特征提取来扩展感受野,在深度卷积模块中以改进的混合池化来替换最大池化;在特征融合方面,引入CBAM,并在增强残差模块中增加了注意力特征融合模块。实验结果表明,改良后的YOLOv3算法在百度与北京林业大学合作的Insects昆虫数据集上的检测精度达到了71.22%,比原始算法的检测精度提升4.88个百分点,验证了该算法的有效性。
- 单位