摘要

作为深度神经网络向非欧式数据上的扩展,图神经网络已经在图节点分类任务、链接预测任务和图分类任务中取得了显著成就。在图分类任务上,当前方法一般通过层次化的池化过程同时考虑图的局部和全局结构信息以学习高层次的图表示。在对当前的图分类模型进行对比分析后,考虑当前方法的不足,结合不同方法的优势,提出结构和特征融合池化模型(Structure and Feature Fusion Pooling Model,SAFPool)。SAFPool模型在池化时使用了两个聚类分配矩阵生成模块,分别是基于结构的聚类学习和基于特征的聚类学习模块,基于结构的聚类学习根据图结构信息对结构相似的节点聚类,基于特征的聚类学习则根据图节点特征对特征相似的节点聚类,二者的聚类结果加权聚合后便能获取实现聚类策略的聚类分配矩阵以同时利用图结构和节点特征信息。最后,在多个图分类数据集上通过对比实验和可视化说明了同时显式地利用图节点特征信息和图结构信息实现聚类策略的有效性。