摘要
高分子的塌缩和临界吸附是高分子科学中的两个重要相变现象,两者均伴随着高分子构象的显著变化.本文利用朗之万动力学方法和动力学Monte Carlo方法分别模拟了高分子的塌缩和临界吸附,同时获得了不同温度下大量的高分子构象数据.机器学习方法利用模拟得到的大量伸展无规线团态和塌缩液滴态、脱附态和吸附态构象数据训练神经网络,学习高分子不同状态的特征,快速准确地分析不同温度的高分子构象信息,得到对应的塌缩相变温度和临界吸附温度.结果表明机器学习能正确给出高分子体系的相变温度,这为机器学习技术研究高分子的相变提供了新的思路和方法.