摘要
为解决小样本和变工况下行星轮轴承剩余寿命预测准确率低的问题,提出一种基于条件深度循环生成对抗网络(C-DRGAN)和动作探索(AD)的行星轮轴承剩余寿命预测方法。将门控循环单元神经网络与条件生成对抗网络相结合,构建C-DRGAN,从非静态和非线性信号中提取故障特征,实现小样本和变工况下行星轮轴承的剩余寿命预测;采用基于AD的训练算法训练C-DRGAN,提高收敛速度,降低训练时间;根据训练后的C-DRGAN,利用多元线性回归分类器预测测试样本中行星轮轴承的剩余寿命。通过行星轮轴承加速疲劳寿命试验验证该方法的有效性。结果表明,该方法具有较强的非静态和非线性信号处理能力,并能在小样本情况下取得出色的行星轮轴承剩余寿命预测效果。
-
单位自动化学院; 哈尔滨理工大学; 中国船舶重工集团公司