摘要

火电机组变工况运行使数据呈现多模态特征,导致基于浅层网络结构的回归软测量模型的预测精度下降。研究一种改进的BP神经网络(back propagation neural network,BPNN)软测量方法:首先利用堆叠稀疏自编码器(stacked sparse autoencoder,SSAE)强大的深度学习能力提取原始数据特征,然后再利用BPNN对提取特征进行回归分析。经实验验证,SSAE+BPNN软测量方法的均方误差为0.135 8×10–3,平方相关系数为0.983 2,其预测精度和泛化能力显著优于BPNN。将其应用于某台灵活调峰的超超临界660 MW发电机组飞灰含碳量软测量中,预测结果的平均相对误差为0.91%,总体相对误差控制在±5%以内,具有良好的工程应用价值。

全文