摘要
目的图像去雾是降低雾、霾、沙等低能见度成像环境对图像的退化影响,提高图像信息获取质量的过程。为了消除先验盲区,同时进一步提高去雾图像边缘细节的清晰度,提出一种混合先验与加权引导滤波的图像去雾算法。方法首先改进大气光值估计方法,提高大气光值估计的准确性。然后利用混合先验理论求取双约束区域的大气透射率,一定程度上消除了先验盲区,提高了去雾算法的鲁棒性。最后利用加权引导滤波算法优化透射率图,提高了图像边缘细节的清晰度。结果本文以通用去雾测试图像和小型无人机拍摄的雾天图像作为实验对象,通过对比分析4种组合步骤算法的复原效果,验证本文各步骤改进方法的合理性与整体算法的优越性。实验结果表明:混合先验理论改善了暗原色先验在明亮区域的失真现象和颜色衰减先验对浓雾处理上的不足,取得了较好的视觉效果;加权引导滤波改善了图像边缘模糊的现象,使复原后的图像边缘细节更加清晰;相较传统算法,本文算法视觉效果更好,去雾图像边缘细节更加明显,综合评价指标均值提升幅度较大。结论针对有雾图像复原,通过理论分析和实验验证,说明了本文各步骤的改进具有一定的优越性,所提的算法具有较强的鲁棒性。
-
单位中国人民解放军陆军工程大学