摘要
云计算系统具有服务器规模大、用户范围广的特点,但同时也消耗了大量的能源,导致云供应商的高运营成本和高碳排放等问题。云计算高度虚拟化,如何分配和管理其虚拟资源,从而保证高效的物理资源利用和能耗控制,是一个多参数博弈过程,同时也是该领域的一个研究热点。提出了一种虚拟机调度模型及基于Shapley值的遗传算法(SV-GA),可通过经济学概念Shapley值计算出参与工作的物理机贡献值,并通过该贡献值修正遗传算法中变异步骤的概率参数,从而完成虚拟机调度的任务。实验结果表明,与Max-Min、Lr Mmt及DE算法相比,SV-GA在虚拟机调度过程中的迁移时间、次数、SLA违背率、能耗等多参数博弈中具有优异的表现。
-
单位中国电信股份有限公司; 浙江大学; 嘉兴南洋职业技术学院; 嘉兴职业技术学院