摘要
针对民航客机航班延误问题,构建了基于随机森林(random forest)与分类回归决策树(CART,classification and regression tree)算法的航班延误预测模型,利用国内大型机场的真实数据集对模型进行训练,通过与Logistic回归算法,K-近邻回归(KNN,K-nearest neighbor)算法和决策树(decision tree)算法的训练结果对比,从拟合效果可以看出,该方法可以处理高维度数据,泛化能力好,降低了过拟合的可能性,模型的拟合程度R2可以达到0.83。
- 单位