摘要
动作识别是近年来时序数据挖掘领域的研究热点,具有广泛的应用前景。但是现阶段基于深度学习的动作识别算法需要大量的标记训练数据集,存在泛化性差、实时性差、场景受限的问题。为解决这些问题,本研究设计一种基于轻量化二维人体姿态估计的小样本动作识别算法。该算法基于YOLOv5算法构建轻量化的人体检测器HYOLOv5。基于轻量化二维姿态估计模型Lite-HRNet设计人体姿态特征描述算子,有效地去除背景对人体动作特征的干扰。为有效度量时序人体姿态特征描述算子间的相似度,本研究提出基于动态时间规整的人体姿态特征距离度量,并在此基础上设计基于类别中心选择的动作模板匹配算法。该算法通过少量的动作视频构建动作特征模板库,利用动作模板匹配算法可实现多类动作视频的精准识别。为验证算法,本研究在COCO 2017的Humans数据集上对HYOLOv5进行测试,人体检测识别精度mAP@0.5∶0.95可达50.7%。基于10种动作视频数据进行测试,结果表明,本研究所提算法可有效地识别视频序列中的姿态,在每个动作仅包含4个训练数据的情况下,动作识别准确率均可达到91.8%。
- 单位