摘要
针对传统平均经验模态分解(EEMD)中添加白噪声参数需依据人工经验设定的缺陷,在研究引起模态混叠原因的基础上提出一种自适应EEMD方法。该方法可以根据信号本身特性,自适应设定白噪声标准差以达到最优分解效果。首先使用奇异值差分谱法对信号进行分解、重构,然后利用提取得到的高频冲击分量和噪声分量的复合分量对所需添加白噪声标准差大小进行自适应整定,最后通过自适应EEMD将信号分解为一系列本征模态函数(IMF)。分形维数对信号特征评价性能良好,所以用分形维数来识别不同类型振动信号是十分有效的。本文提出分层分形维数方法,可提高信号识别、分类效率和准确度。使用该复合方法处理仿真信号、风电机组传动系统实验平台信号均取得良好效果,证明了本文所提方法的有效性。
- 单位