摘要

针对传统简历实体识别存在一词多义和训练时间长的问题,提出了一种新的简历命名实体识别模型。通过RoBERTa预训练模型获取具有上下文关系的字向量,结合BiGRU和多头注意力机制(Multi-head Attention, MHA)层提取全局信息和局部相关性信息,采用CRF层修正解码确定最终标签,同时裁剪RoBERTa预训练模型。实验表明,该模型在中文电子简历数据集取得95.97%的F1值,高于其他主流模型,且相较于未剪枝的模型提升0.43%,减少1/5训练时间。