摘要

由于光照变化、物体遮挡和复杂背景条件等众多因素的影响,目标检测一直是机器视觉领域最具有挑战性的问题。首先对视频目标检测算法中的孪生网络系列算法进行分析比较;然后将孪生网络与深度学习相结合,提出并构建全新的孪生网络跟踪器;最后将视频输入到设计好的孪生网络跟踪器中,通过网络对每一帧图像中物体的类别与位置进行准确地实时框选标注。分别将该算法和当前广泛应用的YOLOv3算法在OTB数据集上进行验证测试。测试数据表明:该算法的视频目标检测成功率和准确率均优于YOLOv3算法。

  • 单位
    北京工业职业技术学院