摘要

遥感植被指数时间序列数据集,已广泛应用于陆地生态环境变化监测与模拟、植被覆盖动态变化分析、植被物候特征识别与信息提取等多方面的研究。但其因受遥感器采集与传输过程、大气条件、地面状况等诸多因素的影响,时序NDVI数据包含各种噪声,因此研究者们发展了一系列时间序列曲线重建方法。本文对近年来提出或改进的重建算法原理、优缺点进行阐述;然后,选择当前最为常用的3种方法,即非对称高斯函数(AG)拟合、双Logistic曲线(D-L)拟合和Savitzky-Golay(S-G)滤波法,以藏北地区不同土地覆被类型样点像元NDVI时间序列为实例,对算法的去噪效果、保真性能、生长峰值及细节处理效果等方面进行比较研...