摘要
针对当前人体动作识别算法检测精度不佳和实验场景多样性的问题,提出了一种混合卷积神经网络-隐马尔可夫模型(CNN-HMM)的人体动作识别方法。建立了抬腿、深蹲和仰卧臀桥3组分别包含1个标准动作姿态和5个非标准动作姿态的人体康复训练动作模型库,结合可穿戴式惯性动作捕捉系统PN2.0获取实验数据。最后从准确率、灵敏度和特异性3个方面进行性能评估。实验结果表明,该方法能够以较高识别率将6种不同动作姿态区分开,其平均识别准确率为97.00%,相较于单一CNN方法提高了5.78%。
- 单位
针对当前人体动作识别算法检测精度不佳和实验场景多样性的问题,提出了一种混合卷积神经网络-隐马尔可夫模型(CNN-HMM)的人体动作识别方法。建立了抬腿、深蹲和仰卧臀桥3组分别包含1个标准动作姿态和5个非标准动作姿态的人体康复训练动作模型库,结合可穿戴式惯性动作捕捉系统PN2.0获取实验数据。最后从准确率、灵敏度和特异性3个方面进行性能评估。实验结果表明,该方法能够以较高识别率将6种不同动作姿态区分开,其平均识别准确率为97.00%,相较于单一CNN方法提高了5.78%。